User Guide for the HelloDevice LS100
Version 1.2.0
Firmware version 12.X
Last revised on May 21, 2004
Printed in Korea

Copyright
Copyright 2002, Sena Technologies, Inc. All rights reserved.
Sena Technologies reserves the right to make changes and improvements to its product without
providing notice.

Trademark
HelloDevice™ is a trademark of Sena Technologies, Inc.
Windows® is a registered trademark of Microsoft Corporation.
Ethernet® is a registered trademark of XEROX Corporation.

Notice to Users
When a system failure may cause serious consequences, protecting life and property against such
consequences with a backup system or safety device is essential. The user agrees that protection
against consequences resulting from system failure is the user's responsibility.

This device is not approved for life-support or medical systems.

Changes or modifications to this device not explicitly approved by Sena Technologies will void the
user's authority to operate this device.

Technical Support
Sena Technologies, Inc.
210 Yangjae-dong, Seocho-gu
Seoul 137-130, Korea
Tel: (+82-2) 573-5422
Fax: (+82-2) 573-7710
E-Mail: support@sena.com
Website: http://www.sena.com
1: Introduction

1.1 Overview

The HelloDevice Lite Series allows you to network-enable a variety of serial devices that were not originally designed to be networked. This capability brings the advantages of remote management and data accessibility to thousands of serial devices over the network.

The LS100 is a most cost effective one port serial-Ethernet communication device. The LS100 supports RS232 serial communication allowing virtually any asynchronous serial device to be accessed over a network.

As for the Internet connectivity, the LS100 supports open network protocols such as TCP/IP allowing serial devices to be accessed over broadband network or conventional LAN (Local Area Network) environment.

The LS100 provides the management console using Telnet and serial console port under the password protection support. And the LS100 also provides the management function using the HelloDevice Manager Software Utility.

The LS100 was designed to accommodate the unique requirements of the Retail POS, Security, Automation and Medical marketplaces.

Parts of this manual assume the knowledge on concepts of the Internetworking protocols and serial communications. If you are not familiar with these concepts, please refer to the standards or the documentation on each subject.
1.2 Package Check List

- LS100 external box
- 110V or 230V Power supply adapter
- Serial console/data cable
- A hardcopy of Quick Start Guide
- CD-ROM including the HelloDevice Manager and User Guide
1.3 Product Specification

| Serial Interface | One male DB9 serial port for data communication/serial console
| | Serial speeds 1200bps to 115200bps
| | Flow Control: None, Hardware RTS/CTS
| | Signals: Rx, Tx, RTS, CTS, DTR, DSR, GND
| Network Interfaces | 10 Base-T Ethernet with RJ45 Ethernet connector
| | Supports static and dynamic IP address
| Protocols | ARP, IP/ICMP, TCP, Telnet, DHCP client, PPPoE
| Security | User ID & Password
| Management | Telnet or serial console port or HelloDevice Manager
| Diagnostic LED | Full-featured system status display
| | Power
| | Ready
| | 10 Base-T Link, Act
| | Serial Rx/Tx for data serial port
| Power | Supply voltage
| | 7.5V ~ 15V DC
| | Supply current
| | 140mA (nom.)
| Environmental | Operating temperature: 0 ~ 55°C
| | Storage temperature: -4 ~ 66°C
| Physical properties | Dimension
| | 100 mm L (3.9 in.)
| | 72 mm W (2.8 in.)
| | 29 mm H (1 in.)
| | Weight
| | 230g
| Approvals | FCC(A), CE(A), MIC
| Warranty | 5-year limited warranty |
1.4 Terminologies and Acronyms

The Internetworking related terminologies used frequently in this manual are defined clearly to help your better understanding of the LS100.

MAC address
On a local area network or other network, the MAC (Media Access Control) address is the computer's unique hardware number. (On an Ethernet LAN, it's the same as your Ethernet address.) It is a unique 12-digit hardware number, which is composed of 6-digit OUI (Organization Unique Identifier) number and 6-digit hardware identifier number. The LS100 has the MAC address of 00-01-95-xx-xx-xx, which is labeled on the bottom side of the external box.

Host
A user's computer connected to the network
In Internet protocol specifications, the term "host" means any computer that has full two-way access to other computers on the Internet. A host has a specific "local or host number" that, together with the network number, forms its unique IP address.

Session
A series of interactions between two communication end points that occur during the span of a single connection
Typically, one end point requests a connection with another specified end point and if that end point replies agreeing to the connection, the end points take turns exchanging commands and data ("talking to each other"). The session begins when the connection is established at both ends and terminates when the connection is ended.

Client/Server
Client/server describes the relationship between two computer programs in which one program, the client, makes a service request from another program, the server, which fulfills the request. A server is a computer program that provides services to other computer programs in the same or other computers, whereas a client is the requesting program or user in a client/server relationship. For example, the user of a Web browser is effectively making client requests for pages from servers all over the Web. The browser itself is a client in its relationship with the computer that is getting and returning the requested HTML file. The computer handling the request and sending back the HTML file is a server.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISP</td>
<td>Internet Service Provider</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>NIC</td>
<td>Network Interface Card</td>
</tr>
<tr>
<td>MAC</td>
<td>Media Access Control</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>UTP</td>
<td>Unshielded Twisted Pair</td>
</tr>
<tr>
<td>ADSL</td>
<td>Asymmetric Digital Subscriber Line</td>
</tr>
<tr>
<td>ARP</td>
<td>Address Resolution Protocol</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>ICMP</td>
<td>Internet Control Message Protocol</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>SMTP</td>
<td>Simple Mail Transfer Protocol</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>PPP</td>
<td>Point-To-Point Protocol</td>
</tr>
<tr>
<td>PPPoE</td>
<td>Point-To-Point Protocol over Ethernet</td>
</tr>
<tr>
<td>HTTP</td>
<td>HyperText Transfer Protocol</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Name Service</td>
</tr>
<tr>
<td>SNMP</td>
<td>Simple Network Management Protocol</td>
</tr>
<tr>
<td>UART</td>
<td>Universal Asynchronous Receiver/Transmitter</td>
</tr>
<tr>
<td>Bps</td>
<td>Bits per second (baud rate)</td>
</tr>
<tr>
<td>DCE</td>
<td>Data Communications Equipment</td>
</tr>
<tr>
<td>DTE</td>
<td>Data Terminal Equipment</td>
</tr>
<tr>
<td>CTS</td>
<td>Clear to Send</td>
</tr>
<tr>
<td>DSR</td>
<td>Data Set Ready</td>
</tr>
<tr>
<td>DTR</td>
<td>Data Terminal Ready</td>
</tr>
<tr>
<td>RTS</td>
<td>Request To Send</td>
</tr>
</tbody>
</table>
2: Getting Started

This chapter describes how to set up and configure the LS100 in the first place.

- 2.1 Panel Layout explains the panel layout and LED indicators.
- 2.2 Connecting the Hardware describes how to connect the power, the network, and the serial device to the LS100.
- 2.3 Accessing Console Port describes how to access the console port using a serial console at a local site or telnet console at a remote site.
- 2.4 Command Usages described how to use command set of the LS100 to configure and view parameter values and status.

Following items are pre-required to get started.

- One DC power adapter (included in the package).
- One serial console cable for configuration (included in the package).
- One RS-232 serial cable for connecting the RS-232 serial device.
- One PC with Network Interface Card (hereafter, NIC) and/or one RS232 serial port.
- Terminal emulation program running on the PC
- One Ethernet cable

2.1 Panel Layout

The LS100 has five LED indicator lamps for status display. Two lamps on the upper side indicate statuses of 10 Base-T Ethernet Link and Act. Next lamp indicates statuses of receive and transmit of the serial port for data communication. Next two lamps indicate the system running status and the system power-on status. Table 2-1 describes function of each LED indicator lamp.

<table>
<thead>
<tr>
<th>Lamps</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Base-T</td>
<td>Link: Turned on to Green if connected to 10 Base-T Ethernet network</td>
</tr>
<tr>
<td></td>
<td>Act: Blink whenever there is any activities such as incoming or outgoing packets through the LS100 Ethernet port</td>
</tr>
<tr>
<td>Serial port</td>
<td>Rx/Tx: Blink whenever there is any incoming or outgoing data stream through the serial port of the LS100</td>
</tr>
<tr>
<td>Status</td>
<td>Ready: Turned on to GREEN if system is running.</td>
</tr>
<tr>
<td></td>
<td>Power: Turned on to RED if power is supplied</td>
</tr>
</tbody>
</table>

Table 2-1. LED indicator lamps
Figure 2-1. The panel layout of the LS100
2.2 Connecting the Hardware

This section describes how to connect the LS100 to serial device for the first time test.

- Connect the power to the LS100
- Connect the Ethernet cable between the LS100 and Ethernet hub or switch
- Connect the serial data cable between the LS100 and a serial device

2.2.1 Connecting the Power

Connect the power jack to the LS100 power jack using DC power adapter included in the package. If the power is properly supplied, the [Power] lamp of the LS100 will maintain solid red.

![Figure 2-2. Connecting the power to the LS100](image)

2.2.2 Connecting to the Network

Connect the one end of the Ethernet cable to the LS100 10Base-T port and the other to the Ethernet network. If the cable is properly hooked up, the LS100 will have a valid connection to the Ethernet network by indicating:

- [Link] lamp of the LS100 maintains solid green
- [Act] lamp continuously blinks to indicate the incoming/outgoing Ethernet packets

If any of the above does not happen, the LS100 is not properly connected to the Ethernet network.
2.2.3 Connecting to the Device

Connect the serial data cable between the LS100 and the serial device. If necessary, supply the power to the serial device attached to the LS100.

Figure 2-3. Connecting a network cable to the LS100

Figure 2-4. Connecting a serial device to the LS100
2.3. Accessing Console Port

There are two ways to access console port of the LS100 depending on whether the user is located at a local site or a remote site.

- Serial console:
 Local users can connect directly to the serial console port of the LS100 using serial console/data cable (null-modem cable). The serial port of the LS100 is used as the console port as well as the data port. To use the serial port as the console port, slide Data/Console switch to the Console side.

- Remote console:
 Remote users can make a telnet connection to the remote console port (port 23) of the LS100 via TCP/IP network.

Both methods require the user to log into the LS100 in order to continue.

2.3.1 Using Serial Console

1) Connect the one end of the serial console cable to the serial port of the LS100.

2) Connect the other end of the cable to the serial port of user's computer.

3) Slide Data/Console switch to Console side.
4) Run a terminal emulator program such as HyperTerminal. Set up the serial configuration parameters of the terminal emulation program as follows:

9600 Baud rate, Data bits 8, Parity None, Stop bits 1, No flow control

5) Press [ENTER] key.

6) Type the user name and password to log into the LS100. A factory default setting of the user name and password are both `admin`.

7) If the user logged into the LS100 successfully, command prompt screen will appear on the computer as shown in Figure 2-7.

```plaintext
login: admin
password: *****
Type 'help' to get command usages
> help
set group par1 [par2 ...] + <CR>
   - group = 'ip','host','serial' or 'admin'
   - par1 ... = configuration parameters. Use * to keep a parameter's value
get [group] + <CR>
   - group = 'ip','host','serial','admin' or 'status'
   - If group is specified, shows settings of the group.
   - If group is omitted, shows settings of all groups.
factory default [option] + <CR>
   - if option is omitted, all parameters are set with factory default values.
   - if option='--ip',
     all parameters except IP settings are set with factory default values.
help [group] + <CR>
   - If group is omitted, shows this screen.
   - If group is specified, shows 'set' command usage of the group.
save + <CR>
   - Save changes
exit + <CR>
   - Exit without rebooting the device
reboot + <CR>
   - Exit and reboot the device
```

Figure 2-7. The LS100 console screen
From the command prompt screen, users can set, get and save configuration parameter values using ‘set’, ‘get’ and ‘save’ command. Users also can exit the console or reboot the device using ‘exit’ and ‘reboot’ command. The usage of the commands can be found using ‘help’ command. For command usages description, please refer to section 2.4 Command usage.

2.3.2 Using Remote Console

The LS100 provides remote console feature via telnet as well as serial console so that users can access the LS100 at remote site for configuration and monitoring purpose. The IP address of the LS100 must be known before users can access the remote console port. The port number for the remote console is 23, which is a TCP port number assigned for Telnet.

Only one user can log into the remote console or serial console at a time. If the serial console is established while a remote console is established, current remote console will be halted and no more remote console will be established until serial console is finished.

To access remote console of the LS100, please use the step as follows:

1) Run a telnet program or a program that supports telnet functions such as TeraTerm-Pro or HyperTerminal. The target IP address and the port number should be those of the LS100. If required, specify the port number as 23. Type the following command in the command line interface of your computer.

telnet 192.168.1.254

Or run a telnet program with parameters as follows.

![Telnet Program Setup Example](image)

2) The user has to log into the LS100. Type the user name and password. A factory default setting of the user name and password are both admin.

3) If the user logged into the LS100 successfully, the same command prompt screen as the one
of serial console will be displayed. The user can set, get, save configuration parameters and
exit console, reboot the device as like the serial console.

4) If serial console or the other remote consoles are connected already, new console will not be
established at all.

2.4 Command Usage

The LS100 provides several simple commands for configuration and control of the LS100. Table 2-2
summarizes command set which LS100 supports.

Table 2-2 LS100 command set summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>set group par1 [par2 ...] + <CR></td>
<td>Set configuration parameters</td>
<td>If success,</td>
</tr>
<tr>
<td></td>
<td>- group = 'ip', 'host', 'serial' or 'admin'</td>
<td>“OK” + <CR> + <LF></td>
</tr>
<tr>
<td></td>
<td>- par1 ... = configuration parameters. Use * to keep a parameter's value</td>
<td>If error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“ERROR” + <CR> + <LF></td>
</tr>
<tr>
<td>get [group] + <CR></td>
<td>Get configuration parameter values</td>
<td>Parameter value display</td>
</tr>
<tr>
<td></td>
<td>- group = 'ip', 'host', 'serial', 'admin' or 'status'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- If group is specified, shows settings of the group.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- If group is omitted, shows settings of all groups.</td>
<td></td>
</tr>
<tr>
<td>help [group] + <CR></td>
<td>Shows command usage screen.</td>
<td>Help message display</td>
</tr>
<tr>
<td></td>
<td>- If group is omitted, shows help screen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- If group is specified, shows ‘set’ command usage of the group.</td>
<td></td>
</tr>
<tr>
<td>factorydefault [option] + <CR></td>
<td>Restore factory default values</td>
<td>If success,</td>
</tr>
<tr>
<td></td>
<td>- if option is omitted, all parameters are set with factory default values.</td>
<td>“OK” + <CR> + <LF></td>
</tr>
<tr>
<td></td>
<td>- if option=’ip’, all parameters except IP settings are set with factory</td>
<td>If error</td>
</tr>
<tr>
<td></td>
<td>default values.</td>
<td>“ERROR” + <CR> + <LF></td>
</tr>
<tr>
<td>save + <CR></td>
<td>Save changes</td>
<td>If success,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“OK” + <CR> + <LF></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“ERROR” + <CR> + <LF></td>
</tr>
<tr>
<td>exit + <CR></td>
<td>Exit without rebooting the device (changes are not applied)</td>
<td>If success,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“OK” + <CR> + <LF></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“ERROR” + <CR> + <LF></td>
</tr>
<tr>
<td>reboot + <CR></td>
<td>Exit and reboot the device</td>
<td>None</td>
</tr>
</tbody>
</table>
2.4.1 ‘set’ Command

With ‘set’ command, users can configure parameter values of the LS100 for each environment. Basic ‘set’ command usage is as follows:

\[
\text{set group par1 [par2 ...]} + \text{<CR>}
\]

where,

- \text{group} = ‘ip’, ‘host’, ‘serial’ or ‘admin’
- \text{par1 par2 ...} = configuration parameters. Use * to keep a parameter’s value

The ‘group’ is the category where the parameters should be entered. For example, if users want to set parameters related to the IP configuration, use set command as shown in the Figure 2-9.

\[
> \text{set ip static 192.168.1.100 255.255.255.0 192.168.1.1}
\]

![Figure 2-9 IP configuration example screen](image)

In the above example, the first parameter ‘ip’ indicates that the following parameters are IP configuration parameters. The second parameter ‘static’ indicates that the LS100 will use static IP address of the third parameter ‘192.168.1.100’. The fifth parameter indicates the subnet mask and the next indicates the default gateway IP address.

If users want to change only one of the parameters of the group, users can omit trailing parameters and/or can use ‘*’ to keep a parameter value. The screen below will show how to change subnet mask only without changing IP address and gateway IP address.

\[
> \text{set ip static * 255.255.0.0}
\]

![Figure 2-10 Changing only one parameter value example](image)

Command usage of ‘set’ will differ depending on the groups. Each ‘set’ command usage of the group can be found using ‘help group’ command. For example, if users want to know how to use ‘set’ command to configure IP configuration, typing ‘help ip’ + <CR> will show ‘set’ command usage for the IP configuration as shown in Figure 2-11.

\[
> \text{help ip}
\]

```bash
set ip ipmode par1 par2 ...
- ipmode: static=Static IP / dhcp=DHCP / pppoe=PPPoE
- parameters:
  if ipmode = static,
    par1 = IP address,
    par2 = subnet mask,
    par3 = gateway
```
if ipmode = dhcp,
 no parameters required
if ipmode = pppoe,
 par1 = PPPoE username,
 par2 = PPPoE password

Figure 2-11 Help screen example

Note:
The changed values will not take effect until 'save' and 'reboot' commands are invoked. For more details, please refer to section 2.4.5 ~ 2.4.7.

2.4.2 'get' Command

With 'get' command, users can view the current parameter values and status of the LS100. Basic 'get' command usage is as follows:

get [group] + <CR>
where,
 group = 'ip','host','serial', 'admin' or 'status'
 - If group is specified, shows settings of the group.
 - If group is omitted, shows settings of all groups.

The group means the category where parameters belong to as like 'set' command. For example, if users want to view parameter values related to IP configuration, get command as Figure 2-12 can be used.

> get ip
IP_mode: static
IP_address: 192.168.1.100
Subnet_mask: 255.255.255.0
Gateway: 192.168.1.1

Figure 2-12 Getting ip configuration screen

'status' group is a special group where 'set' command does not apply. 'get status' will show current system status screen.

> get status
Serial_no.: LS100-0207_test
MAC_address: 00-01-95-77-88-99
F/W_REV.: V1.2.0
Current_IP: 192.168.0.125

Figure 2-13 Getting status screen
If group is omitted, get command will show all of the parameter values as shown in Figure 2-14.

> get
--- Status ---
Serial_no.: LS100-0207_test
MAC_address: 00-01-95-77-88-99
F/W_REV.: V1.2.0
Current_IP: 192.168.0.125
--- Admin ---
Username: admin
Password: admin
Devicename: LS100 Device
--- IP ---
IP_mode: dhcp
--- Host ---
Host_mode: tcps
Local_port: 6001
Inactivity_timeout(sec): 300
--- Serial ---
Baudrate: 9600
Data_bits: 8_bits
Parity: None
Stop_bits: 1_bit
Flow_control: None
DTR_option: Always_high
DSR_option: None
Interchar_timeout(ms): 50
>

Figure 2-14 Getting all parameters screen

2.4.3 ‘help’ Command

With ‘help’ command, users can find command usage help in the console screen. Basic command usage is as follows:

`help [group] + <CR>
where,

if group is omitted, overall help screen will be displayed
if group is specified, ‘set’ command usage of specified group will be displayed.

Figure 2-15 shows help screen when no group is specified while Figure 2-16 shows help screen with ‘ip’ group specified.

> help
set group parl [par2 ...] + <CR>
- group = 'ip','host','serial' or 'admin'
- parl ... = configuration parameters. Use * to keep a parameter's value
get [group] + <CR>
- group = 'ip','host','serial','admin' or 'status'
- If group is specified, shows settings of the group.
- If group is omitted, shows settings of all groups.
help [group] + <CR>
- If group is omitted, shows this screen.
- If group is specified, shows 'set' command usage of the group.

`factorydefault [option] + <CR>`
- if option is omitted, all parameters are set with factory default values.
- if option=''-ip',
 all parameters except IP settings are set with factory default values.

`save + <CR>`
- Save changes
`exit + <CR>`
- Exit without rebooting the device
`reboot + <CR>`
- Exit and reboot the device

Figure 2-15 Help screen

```bash
> help ip
```  
set ip ipmode par1 par2 ...
- ipmode: static=Static IP / dhcp=DHCP / pppoe=PPPoE
- parameters:
 if ipmode = static,
 par1 = IP address,
 par2 = subnet mask,
 par3 = gateway
 if ipmode = dhcp,
 no parameters required
 if ipmode = pppoe,
 par1 = PPPoE username,
 par2 = PPPoE password

Figure 2-16 Help screen with 'ip' group specified

2.4.4 ‘factorydefault’ Command

With ‘factorydefault’ command, users can load factory default parameter values in console. Command usage of ‘factorydefault’ is as follows:

```
factorydefault [option] + <CR>
```
where,
- if option is omitted, all parameters are set with factory default values.
- if option=''-ip', all parameters except IP settings are set with factory default values.

Loaded values are not saved until 'save' command invoked. After 'factorydefault' command, 'save' and 'reboot' commands are required for changes to take effect.

```bash
> factorydefault (or factorydefault -ip)
  OK
> save
  OK
> reboot
```

Figure 2-17 Factory default reset screen
2.4.5 ‘save’ Command

With ‘save’ command, current parameter changes are saved to non-volatile memory. Command usage of ‘save’ command is as follows:

```markdown
save + <CR>
```

Saved changes will be applied if the LS100 is rebooted by ‘reboot’ command or manual rebooting.

2.4.6 ‘exit’ Command

With ‘exit’ command, current serial or remote console session will be closed. However, changed parameters are not applied until the LS100 is manually rebooted. Command usage of ‘exit’ command is as follows:

```markdown
exit + <CR>
```

2.4.7 ‘reboot’ Command

With ‘reboot’ command, the LS100 will be rebooted immediately. Changed parameter values will be applied when the LS100 is up again. Command usage of ‘reboot’ is as follows:

```markdown
reboot + <CR>
```
3: IP Address Configuration

A valid IP address of the LS100 needs to be assigned before it starts to work in the user's network environment. A network system administrator may provide the user with this IP address setting information for the network. The IP address must be unique within the network. Otherwise, the LS100 will not have a valid connection to the network.

Users can choose the desired IP mode out of the three IP operating modes, i.e., Static IP, DHCP and PPPoE. The factory default IP mode is DHCP mode. Table 3-1 shows the parameter items for IP configuration.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>IP address, Subnet mask, Default gateway</td>
</tr>
<tr>
<td>DHCP</td>
<td>No parameters required</td>
</tr>
<tr>
<td>PPPoE</td>
<td>PPPoE username, PPPoE password</td>
</tr>
</tbody>
</table>

Basic ‘set’ command usage for IP configuration is as follows:

```
set ip ipmode par1 par2 ...
```

where,

- `ipmode`: ‘static’ for Static IP / ‘dhcp’ for DHCP / ‘pppoe’ for PPPoE
- `parameters`:
 - if `ipmode = static`,
 - `par1 = IP address, par2 = subnet mask, par3 = gateway`
 - if `ipmode = dhcp`,
 - no parameters required
 - if `ipmode = pppoe`,
 - `par1 = PPPoE username, par2 = PPPoE password`
3.1 Static IP

3.1.1 Overview

In the Static IP mode, users have to manually specify all the parameters such as IP addresses of the LS100, valid subnet mask and the default gateway IP address.

IP address is an identification number assigned to a computer as a permanent address on the network. Computers use IP addresses to identify and talk to each other on the network. Choose the proper IP address which is unique and valid on the network environment.

A subnet represents all the network hosts at one geographic location, in one building, or on the same local area network. When there is any outgoing packet over the network, the LS100 will check whether the desired TCP/IP host specified in the packet is on the local network segment with the help of the subnet mask. If the address is proven to be on the same network segment as the LS100, the connection is established directly from the LS100. Otherwise, the connection is established through the given default gateway.

A gateway is a network point that acts as an entrance to another network. Usually, the computers that control traffic within the network or at the local Internet service provider are gateway nodes. The LS100 needs to know the IP address of the default gateway computer in order to communicate with the hosts outside the local network environment. For correct information on the gateway IP address, please refer to the network administrator.

3.1.2 Static IP Configuration

To configure IP configuration parameters of the LS100, use set command as follows:

```
set ip static ip_address subnet_mask default_gateway <CR>
```

where,

- `ip_address = IP address of the LS100`
- `subnet_mask = Subnet mask`
- `default_gateway = Default gateway IP address`

Figure 3-1 shows IP configuration command example screen. To apply changes, users have to invoke ‘save’ and ‘reboot’ command after changing configuration.
3.2 DHCP

3.2.1 Overview

Dynamic Host Configuration Protocol (DHCP) is a communications protocol that lets network administrators manage and automate the assignment of IP addresses centrally in an organization's network. DHCP lets a network administrator supervise and distribute IP addresses from a central point and automatically send a new IP address when a computer is plugged into a different place in the network.

As described in the section 3.1, the IP address must be entered manually at each computer in Static IP mode and, if computers move to another location in another part of the network, a new IP address must be entered. Meanwhile, all the parameters including the IP address, subnet mask, gateway, DNS servers will be automatically configured when the IP address is assigned in DHCP mode. DHCP uses the concept of a "lease" or amount of time for which a given IP address will be valid for a computer. All the parameters required to assign an IP address are configured on DHCP server side, and each DHCP client computer receives this information when the IP address is provided at its boot-up.

To obtain an IP address, the LS100 sends a corresponding DHCP request as a broadcast over the network after each reset. The reply generated by the DHCP server contains the IP address as well as the subnet mask, gateway address, DNS servers and the lease time. The LS100 immediately places this information in its non-volatile memory. If the operating time reaches the lease time, the LS100 will request the DHCP server for renewal of its lease time. If the DHCP server approves extending the lease, the LS100 can continue to work with the current IP address. Otherwise, the LS100 will start the procedure to request a new IP address to the DHCP server.

A DHCP server assigns IP addresses dynamically from an IP address pool, which is managed by the network administrator. This means DHCP client, i.e. the LS100, receives a different IP address each time it boots up. To prevent the case that users do not know the IP address of the LS100 in such environments, its IP address should be reserved on the DHCP server side. In order to reserve the IP address in the DHCP network, the administrator needs the MAC address of the LS100 found on the label sticker at the bottom of the LS100:

MAC=00:01:95:04:0c:a1
3.2.2 DHCP Configuration

To make the LS100 work in DHCP mode, just set IP mode to DHCP as in Figure 3-2.

```plaintext
> set ip dhcp
OK
>
Figure 3-2. Setting DHCP mode
```

3.3 PPPoE

3.3.1 Overview

PPPoE (PPP over Ethernet) is a specification for connecting multiple computer users on an Ethernet local area network to a remote site through common customer premises equipment, which is the telephone company’s term for a modem and similar devices. PPPoE can be used to have an office or building-full of users share ADSL, cable modem, or wireless connection to the Internet. Usually, it is used in broadband Internet access such as ADSL.

To make the LS100 work in PPPoE mode, users should have a PPPoE account and the equipments for PPPoE access such as an ADSL modem. Since the LS100 provides the PPPoE protocol, it can access the remote host on the Internet over ADSL connection. It is required to set up the user name and password of the PPPoE account.

If the IP mode is set to PPPoE, The LS100 negotiates the PPPoE connection with PPPoE server whenever it boots up. During the negotiation, it receives the information required for Internet connection such as IP address, gateway, subnet mask and DNS servers. If the connection is established, the LS100 tries to maintain the connection as long as possible. If the disconnection is detected, the LS100 will attempt to make a new PPPoE connection by requesting the new connection.

3.3.2 PPPoE Configuration

To make the LS100 work in PPPoE mode, users need to configure the PPPoE username and password for their ADSL account as in Figure 3-3.

```plaintext
> set ip pppoe pppoeuser pppoepassword
OK
>
Figure 3-3. Setting PPPoE mode
```
4. Host Mode Configuration

Host mode represents the operating session mode of the LS100. Several host modes are available for the data communication between the serial device and remote hosts. Since TCP is connection-oriented protocol, server, client, server/client modes are provided. Table 4-1 shows the brief description of the host modes. A factory default host mode is TCP Server.

Table 4-1. The LS100 TCP/IP session modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP server</td>
<td>Select this mode, when users want the LS100 to operate as a TCP server. The LS100 stands by until there is any TCP connection request. If TCP connection is not already established at that time, the LS100 accepts the request and the session is established. In the established state, it transmits the data through the serial port if there is any data from the remote host. Since the LS100 supports only one TCP session for the serial port, the additional TCP connection request will be rejected if already established. This mode is useful when users want to send data to the serial device at any time they want.</td>
</tr>
<tr>
<td>TCP client</td>
<td>Select this mode, when users want the LS100 to operate as a TCP client. When the serial device sends data or pre-defined timer is expired, the LS100 tries to establish a TCP connection to a remote server through its TCP port. If a TCP session is established between them, the LS100 will send data to the server. If there's any data from the server during the session, it will also send the data through the serial port. However, if the LS100 failed to connect to the remote server, the data from the serial port will be discarded. This is useful when the serial device initiates sending data such as data gathering application.</td>
</tr>
<tr>
<td>TCP server/client</td>
<td>If you are not sure which mode to choose, select this mode since it will be applied in most applications. In this mode, the LS100 operates as TCP server AND client. If the connection is not established, it will accept all incoming connection and connect to the remote host if there are any data from the serial device. Otherwise, it will send data back and forth. In summary, the LS100 will work as if it is virtually connected to the remote host.</td>
</tr>
</tbody>
</table>

For each host mode, required parameters for configuration is summarized in Table 4-2.

Table 4-2 Host mode configuration parameters

<table>
<thead>
<tr>
<th>Mode</th>
<th>Listening TCP port</th>
<th>Inactivity timeout (sec)</th>
<th>Destination IP</th>
<th>Destination TCP Port</th>
<th>Cyclic connection Interval</th>
<th>Inactivity timeout (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP Server</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP Client</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP Server/Client</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Basic ‘set’ command usage for host mode configuration is as follows:
set host hostmode par1 par2 ...

where,

hostmode: tcps=TCP server / tcpc=TCP client / tcpsc=TCP server & client

parameters:

if hostmode = TCP server (tcps),
 par1 = listening TCP port,
 par2 = inactivity timeout (sec)
if hostmode = TCP client (tcpc),
 par1 = destination IP address,
 par2 = destination TCP port,
 par3 = cyclic connection interval (min),
 par4 = inactivity timeout (sec)
if hostmode = TCP server & client (tcpsc),
 par1 = listening TCP port,
 par2 = destination IP address,
 par3 = destination TCP port,
 par4 = cyclic connection interval (min),
 par5 = inactivity timeout (sec)

* set cyclic connection interval to 0 not to use cyclic connection
* set inactivity timeout to 0 for unlimited timeout

For easier understanding of TCP modes, a simplified State Transition Diagram is often used. And too help users understand the diagram, the TCP state of the LS100 is briefly described as follows.

- **Listen**
 It represents “a waiting for a connection request from any remote host”. It is a default start-up mode when it is set as TCP server mode. This state is valid only in TCP server mode operation.

- **Closed**
 It means “No connection state at all”. If the data transfer is completed, the state is changed to this state if one of the host requests disconnection request. If it is in TCP server mode, the state is automatically changed to [Listen] mode. It is a default start-up mode when it is set as TCP client mode or TCP server/client mode.

- **Sync-Received**
 In TCP server mode, the state will be changed from [Listen] to [Sync-Received], if any remote host sends connection request. If the LS100 accepts the request, the state will be changed into [Established]. This state is not valid in TCP client mode.
- **Sync-Sent**
 If the LS100 sends a connection request to a remote host, the state is changed from [Closed] to [Sync-Sent]. This state is maintained until the remote host accepts the connection request. This state is valid only in TCP client mode.

- **Established**
 It represents “an open connection”. If one of the hosts accepts a connection request from the other host, the connection is opened and state is changed into [Established].

- **Data**
 When it is in [Established] state, data from a host will be transferred to the other one. For easier understanding of the TCP session operation, we called the state as [Data] state when actual data transfer is performed. Actually, the [Data] mode is a part of [Established] state as is described in the RFC 793 [Transmission Control Protocol]. This is a normal state for the data transfer phase of the connection.

4.1 TCP Server Mode Operations

4.1.1 Overview

The LS100 works as a TCP server, and the default TCP state is [Listen] in this mode. The LS100 supports only one TCP socket connection per one serial port. If a connection is currently established, the additional connection requests will be rejected. The remote host will be either Ethernet-Serial communication devices acting as a TCP client or a socket program acting as a TCP client running on users’ PC.

1) Typical State Transition

At start-up, an initial TCP state is [Listen]. If there is any incoming TCP connection request, the state will be changed into [Sync-Received], then [Established], which means a session is opened. For a while, data will be transferred between the hosts. This is the [Data] state. The session will be disconnected due to the request of one of them, which is [Closed] state. And then, the state is automatically changed to its original state, [Listen].

2) Operations
Serial data transfer
When a session has been established, the LS100 reads the data from the serial port buffer till internal serial buffer is full or inter-character time interval reaches the time specified as *inter-character timeout* value. Then, it transfers the data to the IP address of the remote host. If there’s no remote host connected to the LS100, all the incoming data from the serial port are discarded.

Session disconnection
The connected session will be disconnected when the remote host sends disconnection request or when no data transfer activity is found through the serial port for a certain amount of time, which is "*Inactivity timeout*".

Figure 4-1 shows the State Transition Diagram of the session operations in *TCP server* mode.

![State Transition Diagram of TCP server mode](image)

Figure 4-1. State Transition Diagram of TCP server mode
4.1.2 TCP Server Mode Configuration

To configure the LS100 to work as a TCP server, use ‘set’ command as follows:

```
set host tcps listening_TCP_port inactivity_timeout + <CR>
```

where,

- **listening_TCP_port**: Listening TCP port
- **Inactivity_timeout**: Inactivity timeout in seconds.

Listening TCP port is the TCP port number through which remote host can connect a TCP session, and, send and receive data. Incoming connection request to the ports other than **Listening TCP Port** will be rejected. The LS100 does not restrict the number to a specific range, but it is strongly recommended not to use the well-known ports for certain application (See Appendix D. Well-known Port Numbers). To change the port number, select menu 2 on the TCP Server mode configuration screen.

Inactivity timeout is set to maintain the TCP connection state as *Closed* or *Listen* in TCP host mode unless there is any data transfer between the serial device and the LS100. If there is no incoming or outgoing data through the serial port during the specified **inactivity timeout** interval, the existing TCP connection will be closed automatically.

If the value of **inactivity timeout** is set to 0, the current TCP connection is maintained unless there’s no connection close request. Although **inactivity timeout** is disabled, the LS100 will check the connection status between the LS100 and the remote host by sending “keep alive” packets periodically. If the remote host does not answer the packets, it is regarded that the connection is down unintentionally. Then, the LS100 will force to close the existing TCP connection.

Note:

At least, this value should be set larger than that of inter-character timeout. To prevent the unintended loss of data due to the session disconnection, it is highly recommended that this value is set large enough so that the intended data transfer is completed.

Figure 4-2 shows TCP server mode setting example:

```
> set host tcps 6001 300
OK
>
```

Figure 4-2. TCP server mode setting
4.2 TCP Client Mode Operations

4.2.1 Overview

The LS100 works as a TCP client, and the default TCP state is [Closed] in this mode. The remote host will be either Ethernet-Serial communication devices acting as a TCP server or a socket program acting as a TCP server running on users’ PC.

1) Typical State Transition

At start-up, an initial TCP state is [Closed]. If there is any incoming data through the serial port, the LS100 will try to connect to a user-defined remote host. Then, the state will be changed to [Sync-Sent], which means the connection request is being sent. If the remote host accepts the request, the state will be changed into [Established], which means a session has been opened. For a while, data will be transferred between the hosts. This is [Data] state. The session will be disconnected due to the request of one of them, which is its original state, [Closed].

2) Operations

Serial data transfer
Whenever the serial device sends data through the serial port of the LS100, data will be accumulated to the serial port buffer of the LS100. If the internal serial port buffer is full or inter-character time interval reaches to the time specified as *inter-character timeout* value, it tries to connect to the user-defined IP address of the remote host, if TCP session is not established yet. If the LS100 succeeds in connecting to the remote host, the data in the serial port buffer will be transferred to the host. Otherwise, all the data stored in the buffer will be cleared.

Session disconnection
The connected session will be disconnected when the remote host sends disconnection request or when no data transfer activity is found through the serial port for certain amount of time, which is “*Inactivity timeout*. All the data remained in the serial port buffer will be cleared when it is disconnected.

Connection request from remote host
All the incoming TCP connection requests will be rejected in TCP client mode.

Cyclic Connection
It *Cyclic Connection* function is enabled, the LS100 will make an attempt to connect to the user-defined remote host at certain interval even if there’s no incoming serial data from the device. If the remote host prepares certain data, it will be transferred to the serial device via its serial port.
after the connection is established. Eventually, users can monitor the serial device periodically by making the remote host send the serial command to the LS100 whenever it is connected to the remote host. This option is useful when users need to gather the device information periodically even if the serial device does not send its data periodically. Figure 4-3 shows the State Transition Diagram of the session operations in *TCP client* mode.

![State Transition Diagram of TCP client mode](image)

Figure 4-3. State Transition Diagram of TCP client mode

4.2.2 TCP Client Mode Configuration

To configure the LS100 to work as a TCP client, use set command as follows:

```
set host tcpc dest_ip dest_port cyclic_connection_interval inactivity_timeout + <CR>
```

where,
\textit{dest} _\textit{ip} = destination IP address \\[\textit{dest} _\textit{port} = destination TCP port \]
\textit{cyclic _connection _interval} = cyclic connection interval in minutes
\textit{inactivity _timeout} = inactivity timeout in seconds.

Destination IP address and destination TCP Port are the information on the remote host to which the LS100 will try to connect in TCP client mode. The IP address (or domain name) should be specified together with the TCP port number.

Cyclic connection interval is the time interval at which the LS100 will try to connect to the remote host regardless of the existence of incoming data from the serial port. If the interval is specified with a valid value other than 0, the function is enabled. The time interval will be the specified value by the unit of minute. If the interval is entered as 0, cyclic connection feature will be disabled.

Inactivity timeout is the same as described in TCP server mode setting section.

Figure 4-4 shows TCP client mode setting example:

```
> set host tcpc 192.168.1.1 6001 10 300
OK
>
```

\textit{Figure 4-4 TCP client mode setting}

4.3 TCP Server/Client Mode Operations

4.3.1 Overview

The LS100 works as either TCP server or client according to the situation. This will be the typical mode for most applications, since it will transfer the data either from serial port or from TCP port. The default TCP state is [Listen] which is the same as that of TCP server mode.

1) Typical State Transition

[Listen] \longrightarrow [Sync-Received] \longrightarrow [Established] \longrightarrow [Data] \longrightarrow [Closed] \longrightarrow [Listen]

Or

[Listen] \longrightarrow [Sync-Sent] \longrightarrow [Established] \longrightarrow [Data] \longrightarrow [Closed] \longrightarrow [Listen]

The initial state is [Listen]. If there are data coming from the serial port, it will connect to the remote host as a TCP client. If there is incoming connection request from the remote host, it will accept the connection as a TCP server, and then transfer data through the serial port. Thus, users can assume that the LS100 is always connected to the specified remote host.
2) Operations
The only difference from TCP server mode is that the LS100 will try to connect and send serial data to the remote host even if the TCP session is not established. The difference from TCP client mode is that it will accept incoming connection request from remote host if the session is not established. The detailed operation principles are the same as that of TCP server and TCP client mode.

![State Transition Diagram of TCP server/client mode](image)

Figure 4-5. State Transition Diagram of TCP server/client mode

4.3.2 TCP Server/Client Mode Configuration

To configure the LS100 to work as a TCP server/client mode, use `set` command as follows:

```
set host tcpsc listening_port dest_ip dest_port cyclic_connection_interval inactivity_timeout
```

where,
listening_port = listening TCP port
dest_ip = destination IP address
dest_port = destination TCP port
cyclic_connection_interval = cyclic connection interval in minutes
inactivity_timeout = inactivity timeout in seconds.

Parameter definitions for TCP server and client mode configuration are the same with TCP server mode and TCP client mode parameters.

Figure 4-6 shows TCP server/client mode setting example:

```
> set host tcpsc 6001 192.168.1.100 7001 10 300
OK
>
```

Figure 4-6 TCP server/client mode setting
5: Serial Port Configuration

To attach the serial device to the LS100 serial port, its serial port operation should match exactly to that of the serial device. Serial port configuration parameters are summarized in Table 5-1.

Table 5-1. Serial Port Configuration parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud rate</td>
<td>1200, 2400, 4800, 9600, 19200, 38400, 57600, or 115200</td>
</tr>
<tr>
<td>Data bits</td>
<td>7 bits or 8 bits</td>
</tr>
<tr>
<td>Parity</td>
<td>None, Even or Odd</td>
</tr>
<tr>
<td>Stop bits</td>
<td>1 bit or 2 bits</td>
</tr>
<tr>
<td>Flow control</td>
<td>None, Hardware (RTS/CTS)</td>
</tr>
<tr>
<td>DTR option</td>
<td>Always HIGH, Always LOW, or Show TCP connection</td>
</tr>
<tr>
<td>DSR option</td>
<td>None, Accept TCP connection only by HIGH, or Open/Close TCP connection</td>
</tr>
<tr>
<td>Inter-character timeout</td>
<td>Inter-character timeout value in milliseconds</td>
</tr>
</tbody>
</table>

To configure serial port parameters, use `set` command as follows:

```plaintext
set serial baudrate data_bits parity stop_bits flow_control dtr_option dsr_option interchar_timeout(ms)
```

where,

- **baudrate**: 1200, 2400, 4800, 9600, 19200, 38400, 57600, or 115200
- **data_bits**: 7=7-bits / 8=8-bits
- **parity**: =none / e=even / o=odd
- **stop_bits**: 1=1-bit / 2=2-bits
- **flow_control**: =none / h=hardware
- **dtr_option**: =always high / l=always low / s=show tcp connection
- **dsr_option**: =none / a=accept only by high / o=open,close TCP connection
- **interchar_timeout**: inter-character timeout value in milliseconds

The factory default settings of **baud rate**, **data bits**, **parity** and **stop bits** are 9600, 8 **data bits**, No **parity** and **1 stop bit** respectively. Among the serial configuration, there are three serial modes the LS100 does not support. The LS100 does not support 7 data bits, No parity, 1 stop bit configuration. In this case, the LS100 will operate as 7 data bits, No parity, 2 stop bit mode. In case the LS100 is configured as 8 data bits, Even(or Odd) parity, 2 stop bits mode, the LS100 will operate as 8 data bits, Even (or Odd) parity, 1 stop bit mode.

The factory default setting of the **flow control** is **None**. Only hardware flow control using RTS/CTS is
supported by the LS100. Hardware flow control method controls data communication flow by sending signals back and forth between two connected devices.

The purpose of the DTR/DSR pin is to emulate modem signal control or to control TCP connection state by using serial port signal. The DTR is a write-only output signal, whereas the DSR is a read-only input signal in the LS100 side.

The **DTR option** can be set to one of three types: *always high*, *always low* or *show TCP connection*. If the DTR behavior is set to *show TCP connection*, the state of the DTR pin will be maintained high if the TCP connection is established.

The **DSR option** can be set to one of three types: *none*, *allow TCP connection only by high* or *open/close TCP connection*. *Allow TCP connection only by HIGH* is valid only if host mode is TCP server or equivalent. If this option is set, the incoming TCP connection request will be accepted only when the DSR signal is high state. *Open/close TCP connection* is valid only if the host mode is a TCP client or equivalent. If the DSR behavior is set to *open/close TCP connection*, the high state of the DSR pin will make the LS100 send a connection request to the specified destination host, whereas the low state close a connection.

Inter-character timeout defines the interval that the LS100 fetches the overall serial data from its internal buffer. If there is incoming data through the serial port, the LS100 stores data into the internal buffer. The LS100 transfers data stored in the buffer via TCP/IP, only if the internal buffer is full or if the inter-character time interval reaches to the time specified as **inter-character timeout**.

Optimal inter-character timeout would be different according to your application but at least it must be larger than one character interval within specified baud rate. For example, assume that the serial port is set to 1200 bps, 8 Data bits, 1 stop bit, and no parity. In this case, the total number of bits to send a character is 10 bits and the time required to transfer one character is

\[\frac{10 \text{ (bits)}}{1200 \text{ (bits/s)}} \times 1000 \text{ (ms/s)} = 8.3 \text{ ms.} \]

Therefore, you have to set **inter-character timeout** to be larger than 8.3 ms. The **inter-character timeout** is specified in milliseconds and must be larger than 10 ms.

If users want to send the series of characters into a packet, serial device attached to the LS100 should send characters without time delay larger than **inter-character timeout** between characters and the total length of data must be smaller than or equal to the LS100 internal buffer size. The serial communication buffer size of LS100 is 1400 bytes.

Figure 5-1 shows serial port configuration example of 9600 bps, 7 data bits, even parity, 2 stop bits, hardware flow control, DTR shows TCP connection, No DSR behavior and inter-character time out of 10 ms:

```
> set serial 9600 7 e 2 h s n 10
```
Figure 5-1 Serial port configuration
6: System Administration

Users can configure administrator username, password and device name using set command as follows:

```
set admin username password devicename
  username: login username
  password: login password
  devicename: device name
```

Figure 7-1 shows administrative parameters configuration example:

```
> set admin adminuser adminpassword LS100_test1
OK
>
```

Figure 7-1 Administration parameters configuration
Appendix A: Connections

A.1 Ethernet Pin outs
The LS100 uses standard Ethernet connector, which is a shielded connector compliant with AT&T258 specifications. Table A-1 shows the pin assignment and the wire color.

![Figure A-1 Pin layout of the RJ45 connector](image)

Table A-1. Pin assignment of the RJ45 connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tx+</td>
<td>White with orange</td>
</tr>
<tr>
<td>2</td>
<td>Tx-</td>
<td>Orange</td>
</tr>
<tr>
<td>3</td>
<td>Rx+</td>
<td>White with green</td>
</tr>
<tr>
<td>4</td>
<td>NC</td>
<td>Blue</td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
<td>White with blue</td>
</tr>
<tr>
<td>6</td>
<td>Rx-</td>
<td>Green</td>
</tr>
<tr>
<td>7</td>
<td>NC</td>
<td>White with brown</td>
</tr>
<tr>
<td>8</td>
<td>NC</td>
<td>Brown</td>
</tr>
</tbody>
</table>

A.2 Serial Port Pin Outs
The pin assignment of the LS100 DB9 connector is summarized in Table A-2. Each pin has a function according to the serial communication type configuration.

![Figure A-2 Pin layout of the DB-9 connector](image)

Table A-2. Pin assignment of the DB-9 connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>RS232</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Rx</td>
</tr>
<tr>
<td>3</td>
<td>Tx</td>
</tr>
<tr>
<td>4</td>
<td>DTR</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
</tr>
</tbody>
</table>
A.3 Ethernet Wiring Diagram

Figure A-3 Ethernet direct connection using crossover ethernet cable

Figure A-4 Ethernet connection using straight through ethernet cable

A.4 Serial Wiring Diagram

Figure A-5 RS232 wiring diagram
Appendix B: Well-known Port Numbers

The port numbers are divided into three ranges: the Well Known Ports, the Registered Ports, and the Dynamic and/or Private Ports. The Well Known Ports are those from 0 through 1023. The Registered Ports are those from 1024 through 49151. The Dynamic and/or Private Ports are those from 49152 through 65535.

The Well Known Ports are assigned by the IANA and on most systems, can only be used by system processes or by programs executed by privileged users. Table B-1 shows famous port numbers among the well-known port numbers. For more details, please visit IANA website:

http://www.iana.org/assignments/port-numbers

<table>
<thead>
<tr>
<th>Port number</th>
<th>Protocol (Full Name)</th>
<th>Protocol (Abbreviation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>FTP (File Transfer Protocol)</td>
<td>TCP</td>
</tr>
<tr>
<td>22</td>
<td>SSH (Secure SHell)</td>
<td>TCP</td>
</tr>
<tr>
<td>23</td>
<td>Telnet</td>
<td>TCP</td>
</tr>
<tr>
<td>25</td>
<td>SMTP (Simple Mail Transfer Protocol)</td>
<td>TCP</td>
</tr>
<tr>
<td>37</td>
<td>Time</td>
<td>TCP, UDP</td>
</tr>
<tr>
<td>39</td>
<td>RLP (Resource Location Protocol)</td>
<td>UDP</td>
</tr>
<tr>
<td>49</td>
<td>TACACS, TACACS+</td>
<td>UDP</td>
</tr>
<tr>
<td>53</td>
<td>DNS</td>
<td>UDP</td>
</tr>
<tr>
<td>67</td>
<td>BOOTP server</td>
<td>UDP</td>
</tr>
<tr>
<td>68</td>
<td>BOOTP client</td>
<td>UDP</td>
</tr>
<tr>
<td>69</td>
<td>TFTP</td>
<td>UDP</td>
</tr>
<tr>
<td>70</td>
<td>Gopher</td>
<td>TCP</td>
</tr>
<tr>
<td>79</td>
<td>Finger</td>
<td>TCP</td>
</tr>
<tr>
<td>80</td>
<td>HTTP</td>
<td>TCP</td>
</tr>
<tr>
<td>110</td>
<td>POP3</td>
<td>TCP</td>
</tr>
<tr>
<td>119</td>
<td>NNTP (Network News Transfer Protocol)</td>
<td>TCP</td>
</tr>
<tr>
<td>161/162</td>
<td>SNMP</td>
<td>UDP</td>
</tr>
</tbody>
</table>
Appendix C: Troubleshooting

C.1 Power/LED Status Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power LED does not light up</td>
<td>Power cable is not connected</td>
<td>Check power connection</td>
</tr>
<tr>
<td>Link LED does not light up</td>
<td>Ethernet cable is not connected</td>
<td>Check Ethernet cable connection</td>
</tr>
<tr>
<td></td>
<td>Invalid Ethernet cable is used</td>
<td>There are two types of Ethernet cables: Straight-through cable and crossover cable. If you are using an Ethernet hub, use straight-through cable. If direct connection between the LS100 and remote host is used, use crossover cable instead.</td>
</tr>
<tr>
<td>ACT LED does not blink</td>
<td>Invalid IP configuration</td>
<td>Check IP configuration parameters</td>
</tr>
</tbody>
</table>

C.2 Serial Console Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial console is not connected</td>
<td>Invalid serial cable</td>
<td>Be sure to use a serial console cable (null-modem cable) for serial console</td>
</tr>
<tr>
<td></td>
<td>Invalid serial port configuration of terminal emulation program</td>
<td>Check serial port configuration of terminal emulation program: 9600 bps, 8 Data bits, No parity, 1 stop bit, Hardware flow control</td>
</tr>
<tr>
<td></td>
<td>Invalid Console/Data switch position</td>
<td>Be sure that Console/Data switch position is Console side.</td>
</tr>
<tr>
<td>Serial console is halted for few seconds periodically</td>
<td>IP mode is DHCP, but IP is not assigned</td>
<td>If IP mode is set to DHCP but IP is not actually assigned because of DHCP server failure, serial console is halted for few seconds at every 20 seconds. Change IP mode to the static IP mode</td>
</tr>
<tr>
<td>Cannot login to console</td>
<td>Invalid username and/or password</td>
<td>Use valid username and password. If username and/or password are lost, perform factory default reset using factory reset switch. Factory default value of username and password are both admin</td>
</tr>
</tbody>
</table>

C.3 Remote Console Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot connect to the LS100 using telnet</td>
<td>The LS100 is not assigned valid IP address</td>
<td>Use serial console to assign valid IP address to the LS100</td>
</tr>
<tr>
<td></td>
<td>Someone is using serial console</td>
<td>Exit serial console and retry telnet connection</td>
</tr>
</tbody>
</table>
Cannot login to console | Invalid username and/or password | Use valid username and password. If username and/or password are lost, perform factory default reset using factory reset switch. Factory default value of username and password are both admin.

C.4 IP Address Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot find IP address of the LS100</td>
<td></td>
<td>Use serial console to find IP address</td>
</tr>
<tr>
<td>HelloDeviceManager cannot probe the LS100</td>
<td>The LS100 is not assigned valid IP address</td>
<td>Use serial console to assign valid IP address to the LS100</td>
</tr>
<tr>
<td>HelloDeviceManager and the LS100 are not on the same subnet</td>
<td></td>
<td>Run HelloDeviceManager on the PC that is on the same subnet with the LS100</td>
</tr>
</tbody>
</table>

C.5 DHCP Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot lease IP address</td>
<td>DHCP server is not working</td>
<td>Check if DHCP server is working correctly</td>
</tr>
<tr>
<td>IP address of the LS100 is changed</td>
<td>DHCP server does not extend lease time</td>
<td>Check if DHCP server is working correctly</td>
</tr>
</tbody>
</table>

C.6 TCP Server Mode Operation Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot connect to the LS100</td>
<td>IP configuration of remote host is invalid</td>
<td>Check if IP configuration of the remote host is valid</td>
</tr>
<tr>
<td></td>
<td>Host mode of the LS100 serial port is not TCP server</td>
<td>Change the host mode of the LS100 serial port to TCP server or TCP server/client</td>
</tr>
<tr>
<td></td>
<td>IP address of the LS100 or TCP port number is wrong</td>
<td>Specify valid IP address and TCP port number of the LS100</td>
</tr>
<tr>
<td></td>
<td>DSR option is set but DSR input is not high</td>
<td>Disable DSR option or make DSR input of the LS100 high</td>
</tr>
<tr>
<td></td>
<td>TCP connection with the other host is established already</td>
<td>Close established TCP connection or connect later</td>
</tr>
</tbody>
</table>
C.7 Serial Communication Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial data are not transferred by TCP/IP immediately</td>
<td>Too large inter-character timeout</td>
<td>Set inter-character timeout with smaller value</td>
</tr>
<tr>
<td>Cannot communicate with the LS100</td>
<td>Invalid serial port configuration</td>
<td>Check if serial port configuration of the LS100 are the same with that of the serial device</td>
</tr>
<tr>
<td>Invalid data transferred</td>
<td>Invalid serial port configuration</td>
<td>Check if serial port configuration is correct.</td>
</tr>
</tbody>
</table>